翻訳と辞書
Words near each other
・ Cremnophila pyraustella
・ Cremnophila sedakovella
・ Cremnophora
・ Cremnosterna
・ Cremo
・ Cremo, West Virginia
・ Cremocarpon
・ Cremolino
・ Cremon
・ Cremona
・ Cremona (album)
・ Cremona (crater)
・ Cremona (disambiguation)
・ Cremona Baptistery
・ Cremona Cathedral
Cremona diagram
・ Cremona elephant
・ Cremona group
・ Cremona Motorized Brigade
・ Cremona railway station
・ Cremona, Alberta
・ Cremona–Fidenza railway
・ Cremona–Richmond configuration
・ Cremonini
・ Cremorne
・ Cremorne (barony)
・ Cremorne (clipper)
・ Cremorne (horse)
・ Cremorne Bridge
・ Cremorne Gardens


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cremona diagram : ウィキペディア英語版
Cremona diagram

The Cremona diagram, also known as the Cremona-Maxwell method, is a graphical method used in statics of trusses to determine the forces in members (graphic statics). The method was created by the Italian mathematician Luigi Cremona.
In the Cremona method, first the external forces and reactions are drawn (to scale) forming a vertical line in the lower right side of the picture. This is the sum of all the force vectors and is equal to zero as there is mechanical equilibrium.
Since the equilibrium holds for the external forces on the entire truss construction, it also holds for the internal forces acting on each joint. For a joint to be ''at rest'' the sum of the forces on a joint must also be equal to zero. Starting at joint ''Aorda'', the internal forces can be found by drawing lines in the Cremona diagram representing the forces in the members one and four, going clockwise; ''VA'' (going up) load at ''A'' (going down), force in member one (going down/left), member four (going up/right) and closing with ''VA''. As the force in member one is towards the joint, the member is under compression, the force in member four is away from the joint so the member four is under tension. The length of the lines for members one and four in the diagram, multiplied with the chosen scale factor is the magnitude of the force in members one and four.
Now, in the same way the forces in members two and six can be found for joint ''C''; force in member one (going up/right), force in ''C'' going down, force in two (going down/left), force in six (going up/left) and closing with the force in member one.
The same steps can be taken for joints ''D'', ''H'' and ''E'' resulting in the complete Cremona diagram where the internal forces in all members are known.
In a next phase the forces caused by wind must be considered. Wind will cause pressure on the upwind side of a roof (and truss) and suction on the downwind side. This will translate to asymmetrical loads but the Cremona method is the same. Wind force may introduce larger forces in the individual truss members than the static vertical loads.



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cremona diagram」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.